268 lines
9.5 KiB
TeX
268 lines
9.5 KiB
TeX
|
\part{HOL's Logic}
|
||
|
|
||
|
\frame[plain]{\partpage}
|
||
|
|
||
|
|
||
|
\section{HOL Logic}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Logic}
|
||
|
\begin{itemize}
|
||
|
\item the HOL theorem prover uses a version of classical \textbf{h}igher \textbf{o}rder \textbf{l}ogic:\\
|
||
|
classical higher order predicate calculus with \\
|
||
|
terms from the typed lambda calculus (\ie simple type theory)
|
||
|
\item this sounds complicated, but is intuitive for SML programmers
|
||
|
\item (S)ML and HOL logic designed to fit each other
|
||
|
\item if you understand SML, you understand HOL logic
|
||
|
|
||
|
\bigskip
|
||
|
\begin{center}
|
||
|
\emph{HOL = functional programming + logic}
|
||
|
\end{center}
|
||
|
\bigskip
|
||
|
|
||
|
\begin{alertblock}{Ambiguity Warning}
|
||
|
The acronym \textit{HOL} refers to both the \textit{HOL interactive theorem prover} and the \textit{HOL logic} used by it. It's also a common abbreviation for \textit{higher order logic} in general.
|
||
|
\end{alertblock}
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{Types}
|
||
|
\begin{itemize}
|
||
|
\item SML datatype for types
|
||
|
\begin{itemize}
|
||
|
\item \emph{Type Variables} ($\texttt{'a},\ \alpha,\ \texttt{'b},\ \beta,\ \ldots$)\\
|
||
|
Type variables are implicitly universally quantified. Theorems containing type variables
|
||
|
hold for all instantiations of these. Proofs using type variables can be seen as proof schemata.
|
||
|
\item \emph{Atomic Types} ($\texttt{c}$)\\
|
||
|
Atomic types denote fixed types. Examples: \texttt{num}, \texttt{bool}, \texttt{unit}
|
||
|
\item \emph{Compound Types} ($(\sigma_1, \ldots, \sigma_n) \textit{op}$)\\
|
||
|
\textit{op} is a \alert{type operator} of arity \textit{n} and $\sigma_1, \ldots, \sigma_n$ \alert{argument types}. Type operators denote operations for constructing types.\\
|
||
|
Examples: \texttt{num list} or \texttt{'a \# 'b}.
|
||
|
\item \emph{Function Types} ($\sigma_1 \to \sigma_2$)\\
|
||
|
$\sigma_1 \to \sigma_2$ is the type of \alert{total} functions from $\sigma_1$ to $\sigma_2$.
|
||
|
\end{itemize}
|
||
|
\item types are never empty in HOL, \ie\\
|
||
|
for each type at least one value exists
|
||
|
\item all HOL functions are total
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{Terms}
|
||
|
\begin{itemize}
|
||
|
\item SML datatype for terms
|
||
|
\begin{itemize}
|
||
|
\item \emph{Variables} ($\texttt{x}, \texttt{y}, \ldots$)
|
||
|
\item \emph{Constants} ($\texttt{c}, \ldots$)
|
||
|
\item \emph{Function Application} ($\texttt{f a}$)
|
||
|
\item \emph{Lambda Abstraction} ($\texttt{\textbackslash x.\ f x}$\ \ or\ \ $\lambda x.\ f x$)\\
|
||
|
Lambda abstraction represents anonymous function definition.\\The corresponding SML syntax is \texttt{fn x => f x}.
|
||
|
\end{itemize}
|
||
|
\item terms have to be well-typed
|
||
|
\item same typing rules and same type-inference as in SML take place
|
||
|
\item terms very similar to SML expressions
|
||
|
\item notice: predicates are functions with return type \texttt{bool}, \ie
|
||
|
no distinction between functions and predicates, terms and formulae
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{Terms II}
|
||
|
\begin{tabular}{lll}
|
||
|
\textbf{HOL term} & \textbf{SML expression} & \textbf{type HOL / SML} \\
|
||
|
\hol{0} & \ml{0} & \hol{num} / \ml{int} \\
|
||
|
\hol{x:'a} & \ml{x:'a} & variable of type \hol{'a} \\
|
||
|
\hol{x:bool} & \ml{x:bool} & variable of type \hol{bool} \\
|
||
|
\hol{x + 5} & \ml{x + 5} & applying function \hol{+} to \hol{x} and \hol{5} \\
|
||
|
\hol{\textbackslash x.\ x + 5} & \ml{fn x => x + 5} & anonymous (\aka inline) function \\
|
||
|
& & of type \hol{num -> num} \\
|
||
|
\hol{(5, T)} & \ml{(5, true)} & \hol{num \# bool} / \ml{int * bool}\\
|
||
|
\hol{[5;3;2]++[6]} & \ml{[5,3,2]@[6]} & \hol{num list} / \ml{int list}
|
||
|
\end{tabular}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{Free and Bound Variables / Alpha Equivalence}
|
||
|
\begin{itemize}
|
||
|
\item in SML, the names of function arguments does not matter (much)
|
||
|
\item similarly in HOL, the names of variables used by lambda-abstractions does not matter (much)
|
||
|
\item the lambda-expression $\lambda x.\ t$ is said to \emph{bind} the variables $x$ in term $t$
|
||
|
\item variables that are guarded by a lambda expression are called \emph{bound}
|
||
|
\item all other variables are \emph{free}
|
||
|
\item Example: $x$ is free and $y$ is bound in \hol{$(x = 5) \wedge (\lambda y.\ (y < x))\ 3$}
|
||
|
\item the names of bound variables are unimportant semantically
|
||
|
\item two terms are called \emph{alpha-equivalent} iff they differ only in the names of bound variables
|
||
|
\item Example: \hol{$\lambda{}x.\ x$} and \hol{$\lambda{}y.\ y$} are alpha-equivalent
|
||
|
\item Example: \hol{$x$} and \hol{$y$} are not alpha-equivalent
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{Theorems}
|
||
|
\begin{itemize}
|
||
|
\item theorems are of the form $\Gamma \entails p$ where
|
||
|
\begin{itemize}
|
||
|
\item $\Gamma$ is a set of hypothesis
|
||
|
\item $p$ is the conclusion of the theorem
|
||
|
\item all elements of $\Gamma$ and $p$ are formulae, \ie terms of type \texttt{bool}
|
||
|
\end{itemize}
|
||
|
\item $\Gamma \entails p$ records that using $\Gamma$ the statement $p$ \alert{has been} proved\\
|
||
|
\item notice difference to logic: there it means \alert{can be} proved
|
||
|
\item the proof itself is not recorded
|
||
|
\item theorems can only be created through a small interface in the \emph{kernel}
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\section{Kernel}
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Light Kernel}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item the HOL kernel is hard to explain
|
||
|
\begin{itemize}
|
||
|
\item for historic reasons some concepts are represented rather complicated
|
||
|
\item for speed reasons some derivable concepts have been added
|
||
|
\end{itemize}
|
||
|
\item instead consider the HOL Light kernel, which is a cleaned-up version
|
||
|
\item there are two predefined constants
|
||
|
\begin{itemize}
|
||
|
\item \texttt{= :\ 'a -> 'a -> bool}
|
||
|
\item \texttt{@ :\ ('a -> bool) -> 'a}
|
||
|
\end{itemize}
|
||
|
\item there are two predefined types
|
||
|
\begin{itemize}
|
||
|
\item \texttt{bool}
|
||
|
\item \texttt{ind}
|
||
|
\end{itemize}
|
||
|
\item the meaning of these types and constants is given by inference rules and axioms
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Light Inferences I}
|
||
|
\begin{columns}
|
||
|
\begin{column}{.45\textwidth}
|
||
|
\begin{center}
|
||
|
$\inferrule* [right=REFL] {\ }{\entails t = t}$\\[1em]
|
||
|
$\inferrule*[right=TRANS] {\Gamma \entails s = t\\\Delta \entails t = u}{\Gamma \cup \Delta \entails s = u}$\\[1em]
|
||
|
$\inferrule*[right=COMB]{\Gamma \entails s = t\\\Delta \entails u = v \\\\ \textit{types fit}}{\Gamma \cup \Delta \entails s(u) = t(v)}$\\[1em]
|
||
|
\end{center}
|
||
|
\end{column}
|
||
|
\begin{column}{.45\textwidth}
|
||
|
\begin{center}
|
||
|
$\inferrule*[right=ABS]{\Gamma \entails s = t\\x\ \textit{not free in}\ \Gamma}{\Gamma \entails \lambda{}x.\ s = \lambda{}x.\ t}$\\[1em]
|
||
|
$\inferrule*[right=BETA]{\ }{\entails (\lambda{}x.\ t)\, x = t}$\\[1em]
|
||
|
$\inferrule*[right=ASSUME]{\ }{\{p\}\entails p}$
|
||
|
\end{center}
|
||
|
\end{column}
|
||
|
\end{columns}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Light Inferences II}
|
||
|
\begin{center}
|
||
|
$\inferrule*[right=EQ\_MP]{\Gamma \entails p \Leftrightarrow q\\\Delta \entails p}{\Gamma \cup \Delta \entails q}$\\[1em]
|
||
|
$\inferrule*[right=DEDUCT\_ANTISYM\_RULE]{\Gamma \entails p\\\Delta \entails q}
|
||
|
{(\Gamma-\{q\}) \cup (\Delta - \{p\}) \entails p \Leftrightarrow q}$\\[1em]
|
||
|
$\inferrule*[right=INST]{\Gamma[x_1, \ldots, x_n] \entails p[x_1, \ldots, x_n]}
|
||
|
{\Gamma[t_1, \ldots, t_n] \entails p[t_1, \ldots, t_n]}$\\[1em]
|
||
|
$\inferrule*[right=INST\_TYPE]{\Gamma[\alpha_1, \ldots, \alpha_n] \entails p[\alpha_1, \ldots, \alpha_n]}
|
||
|
{\Gamma[\gamma_1, \ldots, \gamma_n] \entails p[\gamma_1, \ldots, \gamma_n]}$\\[1em]
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\newcommand{\tabitem}{~~\llap{\textbullet}~~}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Light Axioms and Definition Principles}
|
||
|
\begin{itemize}
|
||
|
\item 3 axioms needed\medskip\\\qquad
|
||
|
\begin{tabular}{ll}
|
||
|
ETA\_AX & $|- (\lambda{}x.\ t\ x) = t$ \\
|
||
|
SELECT\_AX & $|- P\ x \Longrightarrow P ((@) P))$ \\
|
||
|
INFINITY\_AX & predefined type \texttt{ind} is infinite
|
||
|
\end{tabular}
|
||
|
\item definition principle for constants
|
||
|
\begin{itemize}
|
||
|
\item constants can be introduced as abbreviations
|
||
|
\item constraint: no free vars and no new type vars
|
||
|
\end{itemize}
|
||
|
\item definition principle for types
|
||
|
\begin{itemize}
|
||
|
\item new types can be defined as non-empty subtypes of existing types
|
||
|
\end{itemize}
|
||
|
\item both principles
|
||
|
\begin{itemize}
|
||
|
\item lead to conservative extensions
|
||
|
\item preserve consistency
|
||
|
\end{itemize}
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Light derived concepts}
|
||
|
Everything else is derived from this small kernel.
|
||
|
\[
|
||
|
\begin{array}{ccl}
|
||
|
T & =_{\textit{def}} & (\lambda{}p.\ p) = (\lambda{}p.\ p)\\
|
||
|
\wedge & =_{\textit{def}} & \lambda{}p\,q.\ (\lambda f.\ f\ p\ q) = (\lambda{}f.\ f\ T\ T) \\
|
||
|
\Longrightarrow & =_{\textit{def}} & \lambda{}p\,q.\ (p \wedge q \Leftrightarrow p) \\
|
||
|
\forall & =_{\textit{def}} & \lambda{}P.\ (P = \lambda{}x.\ T) \\
|
||
|
\exists & =_{\textit{def}} & \lambda{}P.\ (\forall{}q.\ (\forall{}x.\ P(x) \Longrightarrow q) \Longrightarrow q) \\
|
||
|
\ldots \\
|
||
|
\end{array}
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{Multiple Kernels}
|
||
|
\begin{itemize}
|
||
|
\item Kernel defines abstract datatypes for types, terms and theorems
|
||
|
\item one does not need to look at the internal implementation
|
||
|
\item therefore, easy to exchange
|
||
|
\item there are at least 3 different kernels for HOL
|
||
|
\begin{itemize}
|
||
|
\item standard kernel (de Bruijn indices)
|
||
|
\item experimental kernel (name / type pairs)
|
||
|
\item OpenTheory kernel (for proof recording)
|
||
|
\end{itemize}
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\section{HOL Logic Summary}
|
||
|
|
||
|
\begin{frame}
|
||
|
\frametitle{HOL Logic Summary}
|
||
|
\begin{itemize}
|
||
|
\item HOL theorem prover uses classical higher order logic
|
||
|
\item HOL logic is very similar to SML
|
||
|
\begin{itemize}
|
||
|
\item syntax
|
||
|
\item type system
|
||
|
\item type inference
|
||
|
\end{itemize}
|
||
|
\item HOL theorem prover very trustworthy because of LCF approach
|
||
|
\begin{itemize}
|
||
|
\item there is a small kernel
|
||
|
\item proofs are not stored explicitly
|
||
|
\end{itemize}
|
||
|
\item you don't need to know the details of the kernel
|
||
|
\item usually one works at a much higher level of abstraction
|
||
|
\end{itemize}
|
||
|
\end{frame}
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: "current"
|
||
|
%%% End:
|