ITP-Course/lectures/10_definitions.tex

988 lines
31 KiB
TeX
Raw Normal View History

\part{Basic Definitions}
\frame[plain]{\partpage}
\section{Definitions, Axioms and Oracles}
\begin{frame}
\frametitle{Definitional Extensions}
\begin{itemize}
\item there are \emph{conservative definition principles} for types and constants
\item conservative means that all theorems that can be proved in extended theory can also be proved in original one
\item however, such extensions make the theory more comfortable
\item definitions introduce \alert{no new inconsistencies}
\item the HOL community has a very strong tradition of a purely definitional approach
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Axiomatic Extensions}
\begin{itemize}
\item \alert{axioms} are a different approach
\item they allow postulating arbitrary properties, \ie extending the logic with arbitrary theorems
\item this approach might introduce new inconsistencies
\item in HOL axioms are very rarely needed
\item using definitions is often considered more elegant
\item it is hard to keep track of axioms
\item use axioms only if you really know what you are doing
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Oracles}
\begin{itemize}
\item \alert{oracles} are families of axioms
\item however, they are used differently than axioms
\item they are used to enable usage of external tools and knowledge
\item you might want to use an external automated prover
\item this external tool acts as an oracle
\begin{itemize}
\item it provides answers
\item it does not explain or justify these answers
\end{itemize}
\item you don't know, whether this external tool might be buggy
\item all theorems proved via it are tagged with a special oracle-tag
\item tags are propagated
\item this allows keeping track of everything depending on the correctness of this tool
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Oracles II}
\begin{itemize}
\item Common oracle-tags
\begin{itemize}
\item \ml{DISK\_THM} --- theorem was written to disk and read again
\item \ml{HolSatLib} --- proved by MiniSat
\item \ml{HolSmtLib} --- proved by external SMT solver
\item \ml{fast\_proof} --- proof was skipped to compile a theory rapidly
\item \ml{cheat} --- we cheated :-)
\end{itemize}
\item \alert{cheating} via \eg the \hol{cheat} tactic means skipping proofs
\item it can be helpful during proof development
\begin{itemize}
\item test whether some lemmata allow you finishing the proof
\item skip lengthy but boring cases and focus on critical parts first
\item experiment with exact form of invariants
\item \ldots
\end{itemize}
\item cheats should be removed reasonable quickly
\item HOL warns about cheats and skipped proofs
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Pitfalls of Definitional Approach}
\begin{itemize}
\item definitions can't introduce new inconsistencies
\item they force you to state all assumed properties at one location
\item however, you still need to be careful
\item Is your definition really expressing what you had in mind ?
\item Does your formalisation correspond to the real world artefact ?
\item How can you convince others that this is the case ?
\item we will discuss methods to deal with this later in this course
\begin{itemize}
\item formal sanity
\item conformance testing
\item code review
\item comments, good names, clear coding style
\item \ldots
\end{itemize}
\item this is highly complex and needs a lot of effort in general
\end{itemize}
\end{frame}
\section{Primitive Definition Principles}
\begin{frame}[fragile]
\frametitle{Specifications}
\begin{itemize}
\item HOL allows to introduce new constants with certain properties, provided the
existence of such constants has been shown
\begin{exampleblock}{Specification of \texttt{EVEN} and \texttt{ODD}}
\begin{semiverbatim}\scriptsize
> EVEN\_ODD\_EXISTS
val it = |- ?even odd. even 0 \holAnd{} ~odd 0 \holAnd{} (!n. even (SUC n) <=> odd n) \holAnd{}
(!n. odd (SUC n) <=> even n)
> val EO\_SPEC = new\_specification ("EO\_SPEC", ["EVEN", "ODD"], EVEN\_ODD\_EXISTS);
val EO\_SPEC = |- EVEN 0 \holAnd{} ~ODD 0 \holAnd{} (!n. EVEN (SUC n) <=> ODD n) \holAnd{}
(!n. ODD (SUC n) <=> EVEN n)
\end{semiverbatim}
\end{exampleblock}
\item \hol{new\_specification} is a convenience wrapper
\begin{itemize}
\item it uses existential quantification instead of Hilbert's choice
\item deals with pair syntax
\item stores resulting definitions in theory
\end{itemize}
\item \hol{new\_specification} captures the underlying principle nicely
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Definitions}
\begin{itemize}
\item special case: new constant defined by equality
\begin{exampleblock}{Specification with Equality}
\begin{semiverbatim}\scriptsize
> double_EXISTS
val it =
|- ?double. (!n. double n = (n + n))
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =
|- !n. double n = n + n
\end{semiverbatim}
\end{exampleblock}
\item there is a specialised methods for such simple definitions
\begin{exampleblock}{Non Recursive Definitions}
\begin{semiverbatim}\scriptsize
> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ``DOUBLE n = n + n``)
val DOUBLE_DEF =
|- !n. DOUBLE n = n + n
\end{semiverbatim}
\end{exampleblock}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Restrictions for Definitions}
\begin{itemize}
\item all variables occurring on right-hand-side (rhs) need to be arguments
\begin{itemize}
\item \eg \hol{new\_definition (..., ``F n = n + m``)} fails
\item \hol{m} is free on rhs
\end{itemize}
\item all type variables occurring on rhs need to occur on lhs
\begin{itemize}
\item \eg \hol{new\_definition ("IS\_FIN\_TY", \\
\-\qquad\quad``IS\_FIN\_TY = FINITE (UNIV : 'a set)``)} fails
\item \hol{IS\_FIN\_TY} would lead to inconsistency
\item \hol{|- FINITE (UNIV : bool set)}
\item \hol{|- \holNeg{}FINITE (UNIV : num set)}
\item \hol {T <=> FINITE (UNIV:bool set) <=> \\ IS\_FIN\_TY <=>\\ FINITE (UNIV:num set) <=> F}
\item therefore, such definitions can't be allowed
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Underspecified Functions}
\begin{itemize}
\item function specification do not need to define the function precisely
\item multiple different functions satisfying one spec are possible
\item functions resulting from such specs are called \emph{underspecified}
\item underspecified functions are still total, one just lacks knowledge
\item one common application: modelling \emph{partial functions}
\begin{itemize}
\item functions like \eg \hol{HD} and \hol{TL} are total
\item they are defined for empty lists
\item however, it is not specified, which value they have for empty lists
\item only known: \hol{HD [] = HD []} and \hol{TL [] = TL []}
\begin{minipage}{.7\textwidth}\medskip
\begin{semiverbatim}\scriptsize
val MY_HD_EXISTS = prove (``?hd. !x xs. (hd (x::xs) = x)``, ...);
val MY_HD_SPEC =
new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)
\end{semiverbatim}
\end{minipage}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Primitive Type Definitions}
\begin{itemize}
\item HOL allows introducing non-empty subtypes of existing types
\item a predicate \hol{P : ty -> bool} describes a subset of an existing type \hol{ty}
\item \hol{ty} may contain type variables
\item only \emph{non-empty} types are allowed
\item therefore a non-emptyness proof \hol{ex-thm} of form \hol{?e.\ P e} is needed
\item \hol{new\_type\_definition (op-name, ex-thm)} then introduces a new type \hol{op-name}
specified by \hol{P}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Primitive Type Definitions - Example 1}
\begin{itemize}
\item lets try to define a type \hol{dlist} of lists containing no duplicates
\item predicate \hol{ALL\_DISTINCT : 'a list -> bool} is used to define it
\item easy to prove theorem \texttt{dlist\_exists}: \hol{|- ?l.\ ALL\_DISTINCT l}
\item \hol{val dlist\_TY\_DEF = new\_type\_definitions("dlist", dlist\_exists)} defines
a new type \ml{'a dlist} and returns a theorem\bigskip
\begin{semiverbatim}
|- ?(rep :'a dlist -> 'a list).
TYPE_DEFINITION ALL_DISTINCT rep
\end{semiverbatim}\bigskip
\item \ml{rep} is a function taking a \hol{'a dlist} to the list representing it
\begin{itemize}
\item \hol{rep} is injective
\item a list satisfies \hol{ALL\_DISTINCT} iff there is a corresponding \hol{dlist}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Primitive Type Definitions - Example 2}
\begin{itemize}
\item \hol{define\_new\_type\_bijections} can be used to define bijections between old and new type
\medskip
\begin{semiverbatim}\scriptsize
> \hol{define_new_type_bijections \{name="dlist_tybij", ABS="abs_dlist",
REP="rep_dlist", tyax=\alert{dlist_TY_DEF}\}}
val it =
|- (!a. abs_dlist (rep_dlist a) = a) \holAnd{}
(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))
\end{semiverbatim}\medskip
\item other useful theorems can be automatically proved by
\begin{itemize}
\item \hol{prove\_abs\_fn\_one\_one}
\item \hol{prove\_abs\_fn\_onto}
\item \hol{prove\_rep\_fn\_one\_one}
\item \hol{prove\_rep\_fn\_onto}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Primitive Definition Principles Summary}
\begin{itemize}
\item primitive definition principles are easily explained
\item they lead to conservative extensions
\item however, they are cumbersome to use
\item LCF approach allows implementing more convenient definition tools
\begin{itemize}
\item \alert{\texttt{Datatype}} package
\item \alert{\texttt{TFL}} (Total Functional Language) package
\item \ml{IndDef} (Inductive Definition) package
\item \ml{quotientLib} Quotient Types Library
\item ...
\end{itemize}
\end{itemize}
\end{frame}
\section{Functional Programming}
\begin{frame}
\frametitle{Functional Programming}
\begin{itemize}
\item the \hol{Datatype} package allows to define datatypes conveniently
\item the \hol{TFL} package allows to define (mutually recursive) functions
\item the \hol{EVAL} conversion allows evaluating those definitions
\item this gives many HOL developments the feeling of a functional program
\item there is really a close connection between functional programming and definitions in HOL
\begin{itemize}
\item functional programming design principles apply
\item \hol{EVAL} is a great way to test quickly, whether your definitions are working as intended
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functional Programming Example}
\begin{semiverbatim}\scriptsize
> \hol{Datatype `mylist = E | L 'a mylist`}
val it = (): unit
> \hol{Define `(mylen E = 0) \holAnd{} (mylen (L x xs) = SUC (mylen xs))`}
Definition has been stored under "mylen\_def"
val it =
|- (mylen E = 0) \holAnd{} !x xs. mylen (L x xs) = SUC (mylen xs):
thm
> \hol{EVAL ``mylen (L 2 (L 3 (L 1 E)))``}
val it =
|- mylen (L 2 (L 3 (L 1 E))) = 3:
thm
\end{semiverbatim}
\end{frame}
\section{Datatype Definitions}
\begin{frame}[fragile]
\frametitle{Datatype Package}
\begin{itemize}
\item the \hol{Datatype} package allows to define SML style datatypes easily
\item there is support for
\begin{itemize}
\item algebraic datatypes
\item record types
\item mutually recursive types
\item ...
\end{itemize}
\item many constants are automatically introduced
\begin{itemize}
\item constructors
\item case-split constant
\item size function
\item field-update and accessor functions for records
\item ...
\end{itemize}
\item many theorems are derived and stored in current theory
\begin{itemize}
\item injectivity and distinctness of constructors
\item nchotomy and structural induction theorems
\item rewrites for case-split, size and record update functions
\item ...
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example I}
\begin{block}{Tree Datatype in SML}
\begin{semiverbatim}\scriptsize
datatype ('a,'b) btree = Leaf of 'a
| Node of ('a,'b) btree * 'b * ('a,'b) btree
\end{semiverbatim}
\end{block}
\begin{block}{Tree Datatype in HOL}
\begin{semiverbatim}\scriptsize
Datatype `btree = Leaf 'a
| Node btree 'b btree`
\end{semiverbatim}
\end{block}
\begin{block}{Tree Datatype in HOL --- Deprecated Syntax}
\begin{semiverbatim}\scriptsize
Hol_datatype `btree = Leaf of 'a
| Node of btree => 'b => btree`
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example I - Derived Theorems 1}
\begin{block}{\texttt{btree\_distinct}}
\begin{semiverbatim}\scriptsize
|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{btree\_11}}
\begin{semiverbatim}\scriptsize
|- (!a a'. (Leaf a = Leaf a') <=> (a = a')) \holAnd{}
(!a0 a1 a2 a0' a1' a2'.
(Node a0 a1 a2 = Node a0' a1' a2') <=>
(a0 = a0') \holAnd{} (a1 = a1') \holAnd{} (a2 = a2'))
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{btree\_nchotomy}}
\begin{semiverbatim}\scriptsize
|- !bb. (?a. bb = Leaf a) \holOr{} (?b b1 b0. bb = Node b b1 b0)
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{btree\_induction}}
\begin{semiverbatim}\scriptsize
|- !P. (!a. P (Leaf a)) \holAnd{}
(!b b0. P b \holAnd{} P b0 ==> !b1. P (Node b b1 b0)) ==>
!b. P b
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example I - Derived Theorems 2}
\begin{block}{\texttt{btree\_size\_def}}
\begin{semiverbatim}\scriptsize
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) \holAnd{}
(!f f1 a0 a1 a2.
btree_size f f1 (Node a0 a1 a2) =
1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{btree\_case\_def}}
\begin{semiverbatim}\scriptsize
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) \holAnd{}
(!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{btree\_case\_cong}}
\begin{semiverbatim}\scriptsize
|- !M M' f f1.
(M = M') \holAnd{} (!a. (M' = Leaf a) ==> (f a = f' a)) \holAnd{}
(!a0 a1 a2.
(M' = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1' a0 a1 a2)) ==>
(btree_CASE M f f1 = btree_CASE M' f' f1')
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example II}
\begin{block}{Enumeration type in SML}
\begin{semiverbatim}\scriptsize
datatype my_enum = E1 | E2 | E3
\end{semiverbatim}
\end{block}
\begin{block}{Enumeration type in HOL}
\begin{semiverbatim}\scriptsize
Datatype `my_enum = E1 | E2 | E3`
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example II - Derived Theorems}
\begin{block}{\texttt{my\_enum\_nchotomy}}
\begin{semiverbatim}\scriptsize
|- !P. P E1 \holAnd{} P E2 \holAnd{} P E3 ==> !a. P a
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{my\_enum\_distinct}}
\begin{semiverbatim}\scriptsize
|- E1 <> E2 \holAnd{} E1 <> E3 \holAnd{} E2 <> E3
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{my\_enum2num\_thm}}
\begin{semiverbatim}\scriptsize
|- (my_enum2num E1 = 0) \holAnd{} (my_enum2num E2 = 1) \holAnd{} (my_enum2num E3 = 2)
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{my\_enum2num\_num2my\_enum}}
\begin{semiverbatim}\scriptsize
|- !r. r < 3 <=> (my_enum2num (num2my_enum r) = r)
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example III}
\begin{block}{Record type in SML}
\begin{semiverbatim}\scriptsize
type rgb = \{ r : int, g : int, b : int \}
\end{semiverbatim}
\end{block}
\begin{block}{Record type in HOL}
\begin{semiverbatim}\scriptsize
Datatype `rgb = <| r : num; g : num; b : num |>`
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example III - Derived Theorems}
\begin{block}{\texttt{rgb\_component\_equality}}
\begin{semiverbatim}\scriptsize
|- !r1 r2. (r1 = r2) <=>
(r1.r = r2.r) \holAnd{} (r1.g = r2.g) \holAnd{} (r1.b = r2.b)
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{rgb\_nchotomy}}
\begin{semiverbatim}\scriptsize
|- !rr. ?n n0 n1. rr = rgb n n0 n1
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{rgb\_r\_fupd}}
\begin{semiverbatim}\scriptsize
|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1
\end{semiverbatim}
\end{block}
\begin{block}{\texttt{rgb\_updates\_eq\_literal}}
\begin{semiverbatim}\scriptsize
|- !r n1 n0 n.
r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Example IV}
\begin{itemize}
\item nested record types are not allowed
\item however, mutual recursive types can mitigate this restriction
\end{itemize}
\begin{block}{Filesystem Datatype in SML}
\begin{semiverbatim}\scriptsize
datatype file = Text of string
| Dir of \{owner : string ,
files : (string * file) list\}
\end{semiverbatim}
\end{block}
\begin{alertblock}{\textbf{Not Supported} Nested Record Type Example in HOL}
\begin{semiverbatim}\scriptsize
Datatype `file = Text string
| Dir <| owner : string ;
files : (string # file) list |>`
\end{semiverbatim}
\end{alertblock}
\begin{block}{Filesystem Datatype - Mutual Recursion in HOL}
\begin{semiverbatim}\scriptsize
Datatype `file = Text string
| Dir directory
;
directory = <| owner : string ;
files : (string # file) list |>`
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - No support for Co-Algebraic Types}
\begin{itemize}
\item there is no support for co-algebraic types
\item the \texttt{Datatype} package could be extended to do so
\item other systems like Isabelle/HOL provide high-level methods for defining such types
\end{itemize}
\begin{block}{Co-algebraic Type Example in SML --- Lazy Lists}
\begin{semiverbatim}\scriptsize
datatype 'a lazylist = Nil
| Cons of ('a * (unit -> 'a lazylist))
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Datatype Package - Discussion}
\begin{itemize}
\item \texttt{Datatype} package allows to define many useful datatypes
\item however, there are many limitations
\begin{itemize}
\item some types cannot be defined in HOL, \eg empty types
\item some types are not supported, \eg co-algebraic types
\item there are bugs (currently \eg some trouble with certain mutually recursive definitions)
\end{itemize}
\item biggest restrictions in practice (in my opinion and my line of work)
\begin{itemize}
\item no support for co-algebraic datatypes
\item no nested record datatypes
\end{itemize}
\item depending on datatype, different sets of useful lemmata are derived
\item most important ones are added to \hol{TypeBase}
\begin{itemize}
\item tools like \hol{Induct\_on}, \hol{Cases\_on} use them
\item there is support for pattern matching
\end{itemize}
\end{itemize}
\end{frame}
\section{Recursive Function Definitions}
\begin{frame}
\frametitle{Total Functional Language (\texttt{TFL}) package}
\begin{itemize}
\item \ml{TFL} package implements support for terminating functional definitions
\item \hol{Define} defines functions from high-level descriptions
\item there is support for pattern matching
\item look and feel is like function definitions in SML
\item based on \emph{well-founded recursion} principle
\item \hol{Define} is the most common way for definitions in HOL
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Well-Founded Relations}
\begin{itemize}
\item a relation \texttt{R : 'a -> 'a -> bool} is called \emph{well-founded}, iff
there are no infinite descending chains\\[.5em]
\hol{wellfounded R = \holNeg{}?f.\ !n.\ R (f (SUC n)) (f n)}
\bigskip
\item Example: \texttt{\$< :\ num -> num -> bool} is well-founded
\item if arguments of recursive calls are smaller according to well-founded relation,
the recursion terminates
\item this is the essence of termination proofs
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Well-Founded Recursion}
\begin{itemize}
\item a well-founded relation \hol{R} can be used to define recursive functions
\item this recursion principle is called \hol{WFREC} in HOL
\item idea of \hol{WFREC}
\begin{itemize}
\item if arguments get smaller according to \hol{R}, perform recursive call
\item otherwise abort and return \hol{ARB}
\end{itemize}
\item \hol{WFREC} always defines a function
\item if all recursive calls indeed decrease according to \hol{R}, the original recursive
equations can be derived from the \hol{WFREC} representation
\item TFL uses this internally
\item however, this is well-hidden from the user
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{\texttt{Define} - Initial Examples}
\begin{block}{Simple Definitions}
\begin{semiverbatim}\scriptsize
> \hol{val DOUBLE_def = Define `DOUBLE n = n + n`}
val DOUBLE_def =
|- !n. DOUBLE n = n + n:
thm
> \hol{val MY_LENGTH_def = Define `(MY_LENGTH [] = 0) \holAnd{}
(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs))`}
val MY_LENGTH_def =
|- (MY_LENGTH [] = 0) \holAnd{} !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):
thm
> \hol{val MY_APPEND_def = Define `(MY_APPEND [] ys = ys) \holAnd{}
(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys))`}
val MY_APPEND_def =
|- (!ys. MY_APPEND [] ys = ys) \holAnd{}
(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):
thm
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}
\frametitle{\texttt{Define} discussion}
\begin{itemize}
\item \hol{Define} feels like a function definition in HOL
\item it can be used to define "terminating" recursive functions
\item \hol{Define} is implemented by a large, non-trivial piece of SML code
\item it uses many heuristics
\item outcome of \hol{Define} sometimes hard to predict
\item the input descriptions are only hints
\begin{itemize}
\item the produced function and the definitional theorem might be different
\item in simple examples, quantifiers added
\item pattern compilation takes place
\item earlier ``conjuncts'' have precedence
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{\texttt{Define} - More Examples}
\begin{block}{}
\begin{semiverbatim}\scriptsize
> \hol{val MY_HD_def = Define `MY_HD (x :: xs) = x`}
val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm
> \hol{val IS_SORTED_def = Define `
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) \holAnd{} (IS_SORTED (x2::xs)))) \holAnd{}
(IS_SORTED _ = T)`}
val IS_SORTED_def =
|- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 \holAnd{} IS_SORTED (x2::xs)) \holAnd{}
(IS_SORTED [] <=> T) \holAnd{} (!v. IS_SORTED [v] <=> T)
> \hol{val EVEN_def = Define `(EVEN 0 = T) \holAnd{} (ODD 0 = F) \holAnd{}
(EVEN (SUC n) = ODD n) \holAnd{} (ODD (SUC n) = EVEN n)`}
val EVEN_def =
|- (EVEN 0 <=> T) \holAnd{} (ODD 0 <=> F) \holAnd{} (!n. EVEN (SUC n) <=> ODD n) \holAnd{}
(!n. ODD (SUC n) <=> EVEN n) : thm
> \hol{val ZIP_def = Define `(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) \holAnd{}
(ZIP \_ \_ = [])`}
val ZIP_def =
|- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) \holAnd{}
(!v1. ZIP [] v1 = []) \holAnd{} (!v4 v3. ZIP (v3::v4) [] = []) : thm
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Primitive Definitions}
\begin{itemize}
\item \hol{Define} introduces (if needed) the function using \hol{WFREC}
\item intended definition derived as a theorem
\item the theorems are stored in current theory
\item usually, one never needs to look at it
\end{itemize}
\begin{block}{Examples}
\begin{semiverbatim}\scriptsize
val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R.\ WF R \holAnd{} !x1 xs x2. R (x2::xs) (x1::x2::xs))
(\textbsl{}IS_SORTED a.
case a of
[] => I T
| [x1] => I T
| x1::x2::xs => I (x1 < x2 \holAnd{} IS_SORTED (x2::xs)))
|- !R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- !f R x. RESTRICT f R x = (\textbsl{}y. if R y x then f y else ARB)
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Induction Theorems}
\begin{itemize}
\item \hol{Define} automatically defines induction theorems
\item these theorems are stored in current theory with suffix \hol{ind}
\item use \hol{DB.fetch "-" "something\_ind"} to retrieve them
\item these induction theorems are useful to reason about corresponding recursive functions
\end{itemize}
\begin{block}{Example}
\begin{semiverbatim}\scriptsize
val IS_SORTED_ind = |- !P.
((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) \holAnd{}
P [] \holAnd{}
(!v. P [v])) ==>
!v. P v
\end{semiverbatim}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{\texttt{Define} failing}
\begin{itemize}
\item \hol{Define} might fail for various reasons to define a function
\begin{itemize}
\item such a function cannot be defined in HOL
\item such a function can be defined, but not via the methods used by TFL
\item TFL can define such a function, but its heuristics are too weak and user guidance is required
\item there is a bug :-)
\end{itemize}
\item \emph{termination} is an important concept for \hol{Define}
\item it is easy to misunderstand termination in the context of HOL
\item we need to understand what is meant by termination
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Termination in HOL}
\begin{itemize}
\item in SML it is natural to talk about termination of functions
\item in the HOL logic there is no concept of execution
\item thus, there is no concept of termination in HOL
\begin{minipage}{.8\textwidth}
\begin{exampleblock}{3 characterisations of a function \texttt{f :\ num -> num}}
\begin{itemize}
\item \hol{|- !n.\ f n = 0}
\item \hol{|- (f 0 = 0) \holAnd{} !n.\ (f (SUC n) = f n)}
\item \hol{|- (f 0 = 0) \holAnd{} !n.\ (f n = f (SUC n))}
\end{itemize}
Is \hol{f} terminating? All 3 theorems are equivalent.
\end{exampleblock}
\end{minipage}\bigskip
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Termination in HOL II}
\begin{itemize}
\item it is useful to think in terms of termination
\item the TFL package implements heuristics to define functions that would terminate in SML
\item the TFL package uses well-founded recursion
\item the required well-founded relation corresponds to a termination proof
\item therefore, it is very natural to think of \hol{Define} searching a termination proof
\item important: this is the idea behind this function definition package, not a property of HOL
\end{itemize}
\bottomstatement{\alert{HOL is not limited to "terminating" functions}}
\end{frame}
\begin{frame}[fragile]
\frametitle{Termination in HOL III}
\begin{itemize}
\item one can define "non-terminating" functions in HOL
\item however, one cannot do so (easily) with \hol{Define}
\end{itemize}
\begin{exampleblock}{Definition of \texttt{WHILE} in HOL}
\begin{semiverbatim}\scriptsize
\emph{|- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x}
\end{semiverbatim}
\end{exampleblock}
\begin{exampleblock}{Execution Order}\scriptsize
There is no "execution order". One can easily define a complicated constant function:
\vspace{-.7em}
\begin{semiverbatim}
\emph{(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)}
\end{semiverbatim}
\end{exampleblock}
\begin{alertblock}{Unsound Definitions}\scriptsize
A function \hol{f : num -> num} with the following property cannot be defined in HOL unless HOL has an inconsistancy:
\begin{semiverbatim}
\hol{!n. f n = ((f n) + 1)}
\end{semiverbatim}
Such a function would allow to prove \hol{0 = 1}.
\end{alertblock}
\end{frame}
\begin{frame}[fragile]
\frametitle{Manual Termination Proofs I}
\begin{itemize}
\item TFL uses various heuristics to find a well-founded relation
\item however, these heuristics may not be strong enough
\item in such cases the user can provide a well-founded relation manually
\item the most common well-founded relations are \emph{measures}
\item measures map values to natural numbers and use the less relation\\
\hol{|- !(\alert{f:'a -> num}) x y.\ measure f x y <=> (f x < f y)}
\item all measures are well-founded: \hol{|- !f.\ WF (measure f)}
\item moreover, existing well-founded relations can be combined
\begin{itemize}
\item lexicographic order \hol{LEX}
\item list lexicographic order \hol{LLEX}
\item \ldots
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Manual Termination Proofs II}
\begin{itemize}
\item if \hol{Define} fails to find a termination proof, \hol{Hol\_defn} can be used
\item \hol{Hol\_defn} defers termination proofs
\item it derives termination conditions and
sets up the function definitions
\item all results are packaged as a value of type \hol{defn}
\item after calling \hol{Hol\_defn} the defined function(s) can be used
\item however, the intended definition theorem has not been derived yet
\item to derive it, one needs to
\begin{itemize}
\item provide a well-founded relation
\item show that termination conditions respect that relation
\end{itemize}
\item \hol{Defn.tprove} and \hol{Defn.tgoal} are intended for this
\item proofs usually start by providing relation via tactic \hol{WF\_REL\_TAC}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Manual Termination Proof Example 1}
\begin{semiverbatim}\scriptsize
> \hol{val qsort_defn = Hol_defn "qsort" `
(qsort ord [] = []) \holAnd{}
(qsort ord (x::rst) =
(qsort ord (FILTER (\$\holNeg{} o ord x) rst)) ++
[x] ++
(qsort ord (FILTER (ord x) rst)))`}
val qsort_defn = HOL function definition (recursive)
Equation(s) :
[...] |- qsort ord [] = []
[...] |- qsort ord (x::rst) =
qsort ord (FILTER ($\holNeg{} o ord x) rst) ++ [x] ++
qsort ord (FILTER (ord x) rst)
Induction : ...
Termination conditions :
0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. !rst x ord. R (ord,FILTER ($\holNeg{} o ord x) rst) (ord,x::rst)
2. WF R
\end{semiverbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{Manual Termination Proof Example 2}
\begin{semiverbatim}\scriptsize
> \hol{Defn.tgoal qsort_defn}
Initial goal:
?R.
WF R \holAnd{}
(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) \holAnd{}
(!rst x ord. R (ord,FILTER (\$\holNeg{} o ord x) rst) (ord,x::rst))
\pause
> \hol{e (WF_REL_TAC `measure (\textbsl{}(\_, l).\ LENGTH l)`)}
1 subgoal :
(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) \holAnd{}
(!rst x ord. LENGTH (FILTER (\textbsl{}x'.\ \holNeg{}ord x x') rst) < LENGTH (x::rst))
> \hol{...}
\end{semiverbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{Manual Termination Proof Example 3}
\begin{semiverbatim}\scriptsize
> \hol{val (qsort_def, qsort_ind) =
Defn.tprove (qsort_defn,
WF_REL_TAC `measure (\textbsl{}(\_, l).\ LENGTH l)`) >> ...)}
val qsort_def =
|- (qsort ord [] = []) \holAnd{}
(qsort ord (x::rst) =
qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
qsort ord (FILTER (ord x) rst))
val qsort_ind =
|- !P. (!ord. P ord []) \holAnd{}
(!ord x rst.
P ord (FILTER (ord x) rst) \holAnd{}
P ord (FILTER ($~ o ord x) rst) ==>
P ord (x::rst)) ==>
!v v1. P v v1
\end{semiverbatim}
\end{frame}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "current"
%%% End: