ITP-Course/lectures/13_rewriting.tex

1209 lines
38 KiB
TeX
Raw Normal View History

\part{Rewriting}
\frame[plain]{\partpage}
\begin{frame}
\frametitle{Rewriting in HOL}
\begin{itemize}
\item simplification via rewriting was already a strength of Edinburgh LCF
\item it was further improved for Cambridge LCF
\item HOL inherited this powerful rewriter
\item equational reasoning is still the main workhorse
\item there are many different equational reasoning tools in HOL
\begin{itemize}
\item \hol{Rewrite} library\\
inherited from Cambridge LCF\\you have seen it in the form of \hol{REWRITE\_TAC}
\item \hol{computeLib} --- fast evaluation\\
build for speed, optimised for ground terms\\seen in the form of \hol{EVAL}
\item \hol{simpLib} --- Simplification\\
sophisticated rewrite engine, HOL's main workhorse\\
not discussed in this lecture, yet
\item \ldots
\end{itemize}
\end{itemize}
\end{frame}
\section{Rewrite Library}
\begin{frame}
\frametitle{Semantic Foundations}
\begin{itemize}
\item we have seen primitive inference rules for equality before
\begin{columns}
\begin{column}{.35\textwidth}
\begin{center}
$\inferrule*[right=COMB]{\Gamma \entails s = t\\\Delta \entails u = v \\\\ \textit{types fit}}{\Gamma \cup \Delta \entails s(u) = t(v)}$\\[1em]
$\inferrule*[right=TRANS] {\Gamma \entails s = t\\\Delta \entails t = u}{\Gamma \cup \Delta \entails s = u}$\\[1em]
\end{center}
\end{column}
\begin{column}{.25\textwidth}
\begin{center}
$\inferrule*[right=ABS]{\Gamma \entails s = t\\x\ \textit{not free in}\ \Gamma}{\Gamma \entails \lambda{}x.\ s = \lambda{}x.\ t}$\\[1em]
$\inferrule* [right=REFL] {\ }{\entails t = t}$\\[1em]
\end{center}
\end{column}
\end{columns}\medskip
\item these rules allow us to replace any subterm with an equal one
\item this is the core of rewriting
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conversions}
\begin{itemize}
\item in HOL, equality reasoning is implemented by \emph{conversions}
\item a conversion is a SML function of type \hol{term -> thm}
\item given a term \hol{t}, a conversion
\begin{itemize}
\item produces a theorem of the form \hol{|- t = t'}
\item raises an \hol{UNCHANGED} exception or
\item fails, \ie raises an \hol{HOL\_ERR} exception
\end{itemize}
\end{itemize}
\begin{exampleblock}{Example}
\begin{semiverbatim}\scriptsize
> \hol{BETA\_CONV ``(\textbsl{}x. SUC x) y``}
val it = |- (\textbsl{}x. SUC x) y = SUC y
> \hol{BETA\_CONV ``SUC y``}
Exception-HOL_ERR ... raised
> \hol{REPEATC BETA\_CONV ``SUC y``}
Exception- UNCHANGED raised
\end{semiverbatim}
\end{exampleblock}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conversionals}
\begin{itemize}
\item similar to tactics and tacticals there are \emph{conversionals} for conversions
\item conversionals allow building conversions from simpler ones
\item there are many of them
\begin{itemize}
\item \hol{THENC}
\item \hol{ORELSEC}
\item \hol{REPEATC}
\item \hol{TRY\_CONV}
\item \hol{RAND\_CONV}
\item \hol{RATOR\_CONV}
\item \hol{ABS\_CONV}
\item \ldots
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Depth Conversionals}
\begin{itemize}
\item for rewriting depth-conversionals are important
\item a depth-conversional applies a conversion to all subterms
\item there are many different ones
\begin{itemize}
\item \hol{ONCE\_DEPTH\_CONV c} --- top down, applies \hol{c} once at highest possible positions in distinct subterms
\item \hol{TOP\_SWEEP\_CONV c} --- top down, like \hol{ONCE\_DEPTH\_CONV}, but continues processing rewritten terms
\item \hol{TOP\_DEPTH\_CONV c} --- top down, like \hol{TOP\_SWEEP\_CONV}, but try top-level again after change
\item \hol{DEPTH\_CONV c} --- bottom up, recurse over subterms, then apply \hol{c} repeatedly at top-level
\item \hol{REDEPTH\_CONV c} --- bottom up, like \hol{DEPTH\_CONV}, but revisits subterms
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\hol{REWR\_CONV}}
\begin{itemize}
\item it remains to rewrite terms at top-level
\item this is achieved by \hol{REWR\_CONV}
\item given a term \hol{t} and a theorem \hol{|- t1 = t2}, \texttt{REWR\_CONV t thm}
\begin{itemize}
\item searches an instantiation of term and type variables such that \hol{t1} becomes $\alpha$-equivalent to \hol{t}
\item fails, if no instantiation is found
\item otherwise, instantiate the theorem and get \hol{|- t1' = t2'}
\item return theorem \hol{|- t = t2'}
\end{itemize}
\begin{exampleblock}{Example}\scriptsize
term \hol{LENGTH [1;2;3]}, theorem \hol{|- LENGTH ((x:'a)::xs) = SUC (LENGTH xs)}\\
found type instantiation: \hol{[``:'a`` |-> ``:num``]}\\
found term instantiation: \hol{[``x:num`` |-> ``1``; ``xs`` |-> ``[2;3]``]}\\
returned theorem: \hol{|- LENGTH [1;2;3] = SUC (LENGTH [2;3])}
\end{exampleblock}
\item the tricky part is finding the instantiation
\item this problem is called the (term) \emph{matching} problem
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Term Matching}
\begin{itemize}
\item given term \hol{t\_org} and a term \hol{t\_goal} try to find
\begin{itemize}
\item type substitution \hol{ty\_s}
\item term substitution \hol{tm\_s}
\end{itemize}
\item such that \hol{subst tm\_s (inst ty\_s t\_org) \aequiv t\_goal}
\item this can be easily implemented by a recursive search
\bigskip
{\small
\begin{tabular}{lll}
\emph{\texttt{t\_org}} & \emph{\texttt{t\_goal}} & \emph{action} \\
\texttt{t1\_org t2\_org} & \texttt{t1\_goal t2\_goal} & recurse \\
\texttt{t1\_org t2\_org} & otherwise & fail \\
\texttt{\textbsl{}x.\ t\_org x} & \texttt{\textbsl{}y.\ t\_goal y} & match types of \texttt{x}, \texttt{y} and recurse \\
\texttt{\textbsl{}x.\ t\_org x} & otherwise & fail \\
\texttt{const} & same \texttt{const} & match types \\
\texttt{const} & otherwise & fail \\
\texttt{var} & anything & try to bind \texttt{var}, \\ & & take care of existing bindings
\end{tabular}
}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Examples Term Matching}
{\scriptsize
\begin{tabular}{lll}
\emph{\texttt{t\_org}} & \emph{\texttt{t\_goal}} & \emph{substs}\\
\texttt{LENGTH ((x:'a)::xs)} & \texttt{LENGTH [1;2;3]} &
\texttt{'a $\to$ num},
\texttt{x $\to$ 1},
\texttt{xs $\to$ [2;3]} \\
\texttt{[]:'a list} & \texttt{[]:'b list} &
\texttt{'a $\to$ 'b} \\
\texttt{0} & \texttt{0} &
\texttt{empty substitution} \\
\texttt{b \holAnd{} T} & \texttt{(P (x:'a) ==> Q) \holAnd{} T} &
\texttt{b $\to$ P x ==> Q} \\
\texttt{b \holAnd{} b} & \texttt{P x \holAnd{} P x} &
\texttt{b $\to$ P x} \\
\texttt{b \holAnd{} b} & \texttt{P x \holAnd{} P y} &
fail \\
\texttt{!x:num.\ P x \holAnd{} Q x} & \texttt{!y:num.\ P' y \holAnd{} Q' y} &
\texttt{P $\to$ P'},
\texttt{Q $\to$ Q'} \\
\texttt{!x:num.\ P x \holAnd{} Q x} & \texttt{!y.\ (2 = y) \holAnd{} Q' y} &
\texttt{P $\to$ (\$= 2)},
\texttt{Q $\to$ Q'} \\
\texttt{!x:num.\ P x \holAnd{} Q x} & \texttt{!y.\ (y = 2) \holAnd{} Q' y} &
fail
\end{tabular}
}
\bigskip
\begin{itemize}
\item it is often very annoying that the last match in the list above fails
\item it prevents us for example rewriting \hol{!y.\ (2 = y) \holAnd{} Q y} to\\
\hol{(!y.\ (2=y)) \holAnd{} (!y.\ Q y)}
\item Can we do better? Yes, with higher order (term) matching.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Higher Order Term Matching}
\begin{itemize}
\item term matching searches for substitutions such that \texttt{t\_org} becomes $\alpha$-equivalent to \texttt{t\_goal}
\item \emph{higher order term matching} searches for substitutions such that \texttt{t\_org} becomes \texttt{t\_subst} such that the $\beta\eta$-normalform of \texttt{t\_subst} is $\alpha$-equivalent equivalent to $\beta\eta$-normalform of \texttt{t\_goal}, \ie
\textbf{higher order term matching is aware of the semantics of $\lambda$}
\bigskip
$\begin{array}{ll}
\beta\text{-reduction} & (\lambda x.\ f)\ y = f [y/x] \\
\eta\text{-conversion} & (\lambda x.\ f\ x) = f \text{ where $x$ is not free in $f$}
\end{array}$\bigskip
\item the HOL implementation expects \texttt{t\_org} to be a \emph{higher-order pattern}
\begin{itemize}
\item \texttt{t\_org} is $\beta$-reduced
\item if \texttt{X} is a variable that should be instantiated, then all arguments should be
distinct variables
\end{itemize}
\item for other forms of \texttt{t\_org}, HOL's implementation might fail
\item higher order matching is used by \ml{HO\_REWR\_CONV}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Examples Higher Order Term Matching}
{\scriptsize
\begin{tabular}{lll}
\emph{\texttt{t\_org}} & \emph{\texttt{t\_goal}} & \emph{substs}\\
\texttt{!x:num.\ P x \holAnd{} Q x} & \texttt{!y.\ (y = 2) \holAnd{} Q' y} &
\texttt{P $\to$ (\textbsl{}y.\ y = 2)},
\texttt{Q $\to$ Q'} \\
\texttt{!x.\ P x \holAnd{} Q x} & \texttt{!x.\ P x \holAnd{} Q x \holAnd{} Z x} &
\texttt{Q $\to$ \textbsl{}x.\ Q x \holAnd{} Z x} \\
\texttt{!x.\ P x \holAnd{} Q} & \texttt{!x.\ P x \holAnd{} Q x} &
\text{fails} \\
\texttt{!x.\ P (x, x)} & \texttt{!x.\ Q x} &
\text{fails} \\
\texttt{!x.\ P (x, x)} & \texttt{!x.\ FST (x,x) = SND (x,x)} &
\texttt{P $\to$ \textbsl{}xx.\ FST xx = SND xx}
\end{tabular}}
\bottomstatement{Don't worry, it might look complicated, but\\in practice it is easy to get a feeling for higher order matching.}
\end{frame}
\begin{frame}
\frametitle{\ml{Rewrite} Library}
\begin{itemize}
\item the rewrite library combines \hol{REWR\_CONV} with depth conversions
\item there are many different conversions, rules and tactics
\item at their core, they all work very similarly
\begin{itemize}
\item given a list of theorems, a set of rewrite theorems is derived
\begin{itemize}
\item split conjunctions
\item remove outermost universal quantification
\item introduce equations by adding \hol{= T} (or \hol{= F}) if needed
\end{itemize}
\item \texttt{REWR\_CONV} is applied to all the resulting rewrite theorems
\item a depth-conversion is used with resulting conversion
\end{itemize}
\item for performance reasons an efficient indexing structure is used
\item by default implicit rewrites are added
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\ml{Rewrite} Library II}
\begin{itemize}
\item \hol{REWRITE\_CONV}
\item \hol{REWRITE\_RULE}
\item \hol{REWRITE\_TAC}
\item \hol{ASM\_REWRITE\_TAC}
\item \hol{ONCE\_REWRITE\_TAC}
\item \hol{PURE\_REWRITE\_TAC}
\item \hol{PURE\_ONCE\_REWRITE\_TAC}
\item \ldots
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\ml{Ho\_Rewrite} Library}
\begin{itemize}
\item similar to \ml{Rewrite} lib, but uses higher order matching
\item internally uses \ml{HO\_REWR\_CONV}
\item similar conversions, rules and tactics as \ml{Rewrite} lib
\begin{itemize}
\item \hol{Ho\_Rewrite.REWRITE\_CONV}
\item \hol{Ho\_Rewrite.REWRITE\_RULE}
\item \hol{Ho\_Rewrite.REWRITE\_TAC}
\item \hol{Ho\_Rewrite.ASM\_REWRITE\_TAC}
\item \hol{Ho\_Rewrite.ONCE\_REWRITE\_TAC}
\item \hol{Ho\_Rewrite.PURE\_REWRITE\_TAC}
\item \hol{Ho\_Rewrite.PURE\_ONCE\_REWRITE\_TAC}
\item \ldots
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Examples \ml{Rewrite} and \ml{Ho\_Rewrite} Library}
\begin{semiverbatim}\scriptsize
> \hol{REWRITE\_CONV [LENGTH] ``LENGTH [1;2]``}
val it = |- LENGTH [1; 2] = SUC (SUC 0)
> \hol{ONCE\_REWRITE\_CONV [LENGTH] ``LENGTH [1;2]``}
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])
> \hol{REWRITE\_CONV [] ``A \holAnd{} A \holAnd{} \holNeg{}A``}
Exception- UNCHANGED raised
> \hol{PURE\_REWRITE\_CONV [NOT\_AND] ``A \holAnd{} A \holAnd{} \holNeg{}A``}
val it = |- A \holAnd{} A \holAnd{} \holNeg{}A <=> A \holAnd{} F
> \hol{REWRITE\_CONV [NOT\_AND] ``A \holAnd{} A \holAnd{} \holNeg{}A``}
val it = |- A \holAnd{} A \holAnd{} \holNeg{}A <=> F
> \hol{REWRITE\_CONV [FORALL_AND_THM] ``!x. P x \holAnd{} Q x \holAnd{} R x``}
Exception- UNCHANGED raised
> \hol{Ho_Rewrite.REWRITE\_CONV [FORALL_AND_THM] ``!x. P x \holAnd{} Q x \holAnd{} R x``}
val it = |- !x. P x \holAnd{} Q x \holAnd{} R x <=> (!x. P x) \holAnd{} (!x. Q x) \holAnd{} (!x. R x)
\end{semiverbatim}
\end{frame}
\begin{frame}
\frametitle{Summary \ml{Rewrite} and \ml{Ho\_Rewrite} Library}
\begin{itemize}
\item the \ml{Rewrite} and \ml{Ho\_Rewrite} library provide powerful infrastructure for term rewriting
\item thanks to clever implementations they are reasonably efficient
\item basics are easily explained
\item however, efficient usage needs some experience
\end{itemize}
\end{frame}
\section{Term Rewriting Systems}
\begin{frame}
\frametitle{Term Rewriting Systems}
\begin{itemize}
\item to use rewriting efficiently, one needs to understand about term rewriting systems
\item this is a large topic
\item unluckily, it cannot be covered here in detail for time constraints
\item however, in practise you quickly get a feeling
\item important points in practise
\begin{itemize}
\item ensure termination of your rewrites
\item make sure they work nicely together
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Term Rewriting Systems --- Termination}
\begin{block}{Theory}
\begin{itemize}
\item choose well-founded order $\prec$
\item for each rewrite theorem \hol{|- t1 = t2} ensure \hol{t2 $\prec$ t1}
\end{itemize}
\end{block}
\begin{block}{Practice}
\begin{itemize}
\item informally define for yourself what \emph{simpler} means
\item ensure each rewrite makes terms simpler
\item good heuristics
\begin{itemize}
\item subterms are simpler than whole term
\item use an order on functions
\end{itemize}
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Termination --- Subterm examples}
\begin{itemize}
\item a proper subterm is always simpler
\begin{itemize}
\item \hol{!l.\ APPEND [] l = l}
\item \hol{!n.\ n + 0 = n}
\item \hol{!l.\ REVERSE (REVERSE l) = l}
\item \hol{!t1 t2.\ if T then t1 else t2 <=> t1}
\item \hol{!n.\ n * 0 = 0}
\end{itemize}\medskip
\item the right hand side should not use extra vars, throwing parts away is usually simpler
\begin{itemize}
\item \hol{!x xs.\ (SNOC x xs = []) = F}
\item \hol{!x xs.\ LENGTH (x::xs) = SUC (LENGTH xs)}
\item \hol{!n x xs.\ DROP (SUC n) (x::xs) = DROP n xs}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Termination --- use simpler terms}
\begin{itemize}
\item it is useful to consider some functions simple and other complicated
\item replace complicated ones with simple ones
\item never do it in the opposite direction
\item clear examples
\begin{itemize}
\item \hol{|- !m n.\ MEM m (COUNT\_LIST n) <=> (m < n)}
\item \hol{|- !ls n.\ (DROP n ls = []) <=> (n >= LENGTH ls)}
\end{itemize}\medskip
\item unclear example
\begin{itemize}
\item \hol{|- !L.\ REVERSE L = REV L []}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Termination --- Normalforms}
\begin{itemize}
\item some equations can be used in both directions
\item one should decide on one direction
\item this implicitly defines a \emph{normalform} one wants terms to be in
\item examples
\begin{itemize}
\item \hol{|- !f l.\ MAP f (REVERSE l) = REVERSE (MAP f l)}
\item \hol{|- !l1 l2 l3.\ l1 ++ (l2 ++ l3) = l1 ++ l2 ++ l3}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Termination --- Problematic rewrite rules}
\begin{itemize}
\item some equations immediately lead to non-termination, \eg
\begin{itemize}
\item \hol{|- !m n.\ m + n = n + m}
\item \hol{|- !m.\ m = m + 0}
\end{itemize}\medskip
\item slightly more subtle are rules like
\begin{itemize}
\item \hol{|- !n.\ fact n = if (n = 0) then 1 else n * fact(n-1)}
\end{itemize}\medskip
\item often combination of multiple rules leads to non-termination\\
this is especially problematic when adding to predefined sets of rewrites
\begin{itemize}
\item \hol{|- !m n p.\ m + (n + p) = (m + n) + p} and \\
\hol{|- !m n p.\ (m + n) + p = m + (n + p)}
\end{itemize}\medskip
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Rewrites working together}
\begin{itemize}
\item rewrite rules should not compete with each other
\item if a term \hol{ta} can be rewritten to \hol{ta1} and \hol{ta2} applying different rewrite rules, then \hol{ta1} and \hol{ta2} it should be possible to further rewrite them both to a common \hol{tb}
\item this can often be achieved by adding extra rewrite rules
\end{itemize}
\begin{exampleblock}{Example}
Assume we have the rewrite rules \hol{|- DOUBLE n = n + n} and\\
\hol{|- EVEN (DOUBLE n) = T}.\\
With these the term \hol{EVEN (DOUBLE 2)} can be rewritten to
\begin{itemize}
\item \hol{T} or
\item \hol{EVEN (2 + 2)}.
\end{itemize}
To avoid a hard to predict result, \hol{EVEN (2+2)} should be rewritten to \hol{T}. Adding an extra rewrite rule \hol{|- EVEN (n + n) = T} achieves this.
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Rewrites working together II}
\begin{itemize}
\item to design rewrite systems that work well, normalforms are vital
\item a term is in \emph{normalform}, if it cannot be rewritten any further
\item one should have a clear idea what the normalform of common terms looks like
\item all rules should work together to establish this normalform
\item the right-hand-side of each rule should be in normalform
\item the left-hand-side should not be simplifiable by any other rule
\item the order in which rules are applied should not influence the final result
\end{itemize}
\end{frame}
\section{\texttt{computeLib}}
\begin{frame}
\frametitle{\hol{computeLib}}
\begin{itemize}
\item \hol{computeLib} is the library behind \hol{EVAL}
\item it is a rewriting library designed for evaluating ground terms (\ie terms without variables) efficiently
\item it uses a call-by-value strategy similar to SML's
\item it uses first order term matching
\item it performs $\beta$ reduction in addition to rewrites
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\hol{compset}}
\begin{itemize}
\item \hol{computeLib} uses \hol{compset}s to store its rewrites
\item a \hol{compset} stores
\begin{itemize}
\item rewrite rules
\item extra conversions
\end{itemize}
\item the extra conversions are guarded by a term pattern for efficiency
\item users can define their own compsets
\item however, \hol{computeLib} maintains one special compset called \hol{the\_compset}
\item \hol{the\_compset} is used by \hol{EVAL}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\hol{EVAL}}
\begin{itemize}
\item \hol{EVAL} uses \hol{the\_compset}
\item tools like the \hol{Datatype} or \hol{TFL} libraries automatically extend \hol{the\_compset}
\item this way, \hol{EVAL} knows about (nearly) all types and functions
\item one can extended \hol{the\_compset} manually as well
\item rewrites exported by \hol{Define} are good for ground terms but may lead to non-termination for non-ground terms
\item \hol{zDefine} prevents \hol{TFL} from automatically extending \hol{the\_compset}
\end{itemize}
\end{frame}
\section{\texttt{simpLib}}
\begin{frame}
\frametitle{\hol{simpLib}}
\begin{itemize}
\item \hol{simpLib} is a sophisticated rewrite engine
\item it is HOL's main workhorse
\item it provides
\begin{itemize}
\item higher order rewriting
\item usage of context information
\item conditional rewriting
\item arbitrary conversions
\item support for decision procedures
\item simple heuristics to avoid non-termination
\item fancier preprocessing of rewrite theorems
\item \ldots
\end{itemize}
\item it is very powerful, but compared to \hol{Rewrite} lib sometimes slow
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Basic Usage I}
\begin{itemize}
\item \hol{simpLib} uses \emph{simpsets}
\item simpsets are special datatypes storing
\begin{itemize}
\item rewrite rules
\item conversions
\item decision procedures
\item congruence rules
\item \ldots
\end{itemize}
\item in addition there are simpset-fragments
\item simpset-fragments contain similar information as simpsets
\item fragments can be added to and removed from simpsets
\item common usage: basic simpset combined with one or more simpset-fragments, \eg
\begin{itemize}
\item \hol{list\_ss ++ pairSimps.gen\_beta\_ss}
\item \hol{std\_ss ++ QI\_ss}
\item \ldots
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Basic Usage II}
\begin{itemize}
\item a call to the simplifier takes as arguments
\begin{itemize}
\item a simpset
\item a list of rewrite theorems
\end{itemize}
\item common high-level entry points are
\begin{itemize}
\item \hol{SIMP\_CONV ss thmL} --- conversion
\item \hol{SIMP\_RULE ss thmL} --- rule
\item \hol{SIMP\_TAC ss thmL} --- tactic without considering assumptions
\item \hol{ASM\_SIMP\_TAC ss thmL} --- tactic using assumptions to simplify goal
\item \hol{FULL\_SIMP\_TAC ss thmL} --- tactic simplifying assumptions with each other and goal with assumptions
\item \hol{REV\_FULL\_SIMP\_TAC ss thmL} --- similar to \texttt{FULL\_SIMP\_TAC} but with reversed order of assumptions
\end{itemize}
\item there are many derived tools not discussed here
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Basic Simplifier Examples}
\begin{semiverbatim}\scriptsize
> \hol{SIMP_CONV bool_ss [LENGTH] ``LENGTH [1;2]``}
val it = |- LENGTH [1; 2] = SUC (SUC 0)
> \hol{SIMP_CONV std_ss [LENGTH] ``LENGTH [1;2]``}
val it = |- LENGTH [1; 2] = 2
> \hol{SIMP_CONV list_ss [] ``LENGTH [1;2]``}
val it = |- LENGTH [1; 2] = 2
\end{semiverbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{\hol{FULL\_SIMP\_TAC} Example}
\begin{exampleblock}{Current GoalStack}
\begin{semiverbatim}\scriptsize
P (SUC (SUC x0)) (SUC (SUC y0))
------------------------------------
0. SUC y1 = y2
1. x1 = SUC x0
2. y1 = SUC y0
3. SUC x1 = x2
\end{semiverbatim}
\end{exampleblock}
\begin{exampleblock}{Action}
\begin{semiverbatim}\scriptsize
FULL_SIMP_TAC std_ss []
\end{semiverbatim}
\end{exampleblock}
\begin{exampleblock}{Resulting GoalStack}
\begin{semiverbatim}\scriptsize
P (SUC (SUC x0)) y2
------------------------------------
0. SUC (SUC y0) = y2
1. x1 = SUC x0
2. y1 = SUC y0
3. SUC x1 = x2
\end{semiverbatim}
\end{exampleblock}
\end{frame}
\begin{frame}[fragile]
\frametitle{\hol{REV\_FULL\_SIMP\_TAC} Example}
\begin{exampleblock}{Current GoalStack}
\begin{semiverbatim}\scriptsize
P (SUC (SUC x0)) y2
------------------------------------
0. SUC (SUC y0) = y2
1. x1 = SUC x0
2. y1 = SUC y0
3. SUC x1 = x2
\end{semiverbatim}
\end{exampleblock}
\begin{exampleblock}{Action}
\begin{semiverbatim}\scriptsize
REV_FULL_SIMP_TAC std_ss []
\end{semiverbatim}
\end{exampleblock}
\begin{exampleblock}{Resulting GoalStack}
\begin{semiverbatim}\scriptsize
P x2 y2
------------------------------------
0. SUC (SUC y0) = y2
1. x1 = SUC x0
2. y1 = SUC y0
3. SUC (SUC x0) = x2
\end{semiverbatim}
\end{exampleblock}
\end{frame}
\begin{frame}[fragile]
\frametitle{Common simpsets}
\begin{itemize}
\item \hol{pure\_ss} --- empty simpset
\item \hol{bool\_ss} --- basic simpset
\item \hol{std\_ss} --- standard simpset
\item \hol{arith\_ss} --- arithmetic simpset
\item \hol{list\_ss} --- list simpset
\item \hol{real\_ss} --- real simpset
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Common simpset-fragments}
\begin{itemize}
\item many theories and libraries provide their own simpset-fragments
\item \hol{PRED\_SET\_ss} --- simplify sets
\item \hol{STRING\_ss} --- simplify strings
\item \hol{QI\_ss} --- extra quantifier instantiations
\item \hol{gen\_beta\_ss} --- $\beta$ reduction for pairs
\item \hol{ETA\_ss} --- $\eta$ conversion
\item \hol{EQUIV\_EXTRACT\_ss} --- extract common part of equivalence
\item \hol{CONJ\_ss} --- use conjunctions for context
\item \hol{LIFT\_COND\_ss} --- lifting if-then-else
\item \ldots
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Build-In Conversions and Decision Procedures}
\begin{itemize}
\item in contrast to \hol{Rewrite} lib the simplifier can
run arbitrary conversions
\item most common and useful conversion is probably $\beta$-reduction
\item \hol{std\_ss} has support for basic arithmetic and numerals
\item it also has simple, syntactic conversions for instantiating quantifiers
\begin{itemize}
\item \hol{!x. ... \holAnd{} (x = c) \holAnd{} ... ==> ...}
\item \hol{!x. ... \holOr{} \holNeg(x = c) \holOr{} ...}
\item \hol{?x. ... \holAnd{} (x = c) \holAnd{} ...}
\end{itemize}
\item besides very useful conversions, there are decision procedures as well
\item the most frequently used one is probably the arithmetic decision procedure you already know from \hol{DECIDE}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Examples I}
\begin{semiverbatim}\scriptsize
> \hol{SIMP_CONV std_ss [] ``(\textbsl{}x. x + 2) 5``}
val it = |- (\textbsl{}x. x + 2) 5 = 7
> \hol{SIMP_CONV std_ss [] ``!x. Q x \holAnd{} (x = 7) ==> P x``}
val it = |- (!x. Q x \holAnd{} (x = 7) ==> P x) <=> (Q 7 ==> P 7)``
> \hol{SIMP_CONV std_ss [] ``?x. Q x \holAnd{} (x = 7) \holAnd{} P x``}
val it = |- (?x. Q x \holAnd{} (x = 7) \holAnd{} P x) <=> (Q 7 \holAnd{} P 7)``
> \hol{SIMP_CONV std_ss [] ``x > 7 ==> x > 5``}
Exception- UNCHANGED raised
> \hol{SIMP_CONV arith_ss [] ``x > 7 ==> x > 5``}
val it = |- (x > 7 ==> x > 5) <=> T
\end{semiverbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{Higher Order Rewriting}
\begin{itemize}
\item the simplifier supports higher order rewriting
\item this is often very handy
\item for example it allows moving quantifiers around easily
\end{itemize}
\begin{exampleblock}{Examples}
\begin{semiverbatim}\scriptsize
> \hol{SIMP_CONV std_ss [FORALL_AND_THM] ``!x. P x \holAnd{} Q \holAnd{} R x``}
val it = |- (!x. P x \holAnd{} Q \holAnd{} R x) <=>
(!x. P x) \holAnd{} Q \holAnd{} (!x. R x)
> \hol{SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
``!y. (P y \holAnd{} (?x. y = SUC x)) ==> Q y``}
val it = |- (!y. P y \holAnd{} (?x. y = SUC x) ==> Q y) <=>
!x. P (SUC x) ==> Q (SUC x)
\end{semiverbatim}
\end{exampleblock}
\end{frame}
\begin{frame}[fragile]
\frametitle{Context}
\begin{itemize}
\item a great feature of the simplifier is that it can use context information
\item by default simple context information is used like
\begin{itemize}
\item the precondition of an implication
\item the condition of \hol{if-then-else}
\end{itemize}
\item one can configure which context to use via congruence rules
\begin{itemize}
\item \eg by using \hol{CONJ\_ss} one can easily use context of conjunctions
\item warning: using \hol{CONJ\_ss} can be slow
\end{itemize}
\item using context often simplifies proofs drastically
\begin{itemize}
\item using \hol{Rewrite} lib, often a goal needs to be split and a precondition moved to the assumptions
\item then \hol{ASM\_REWRITE\_TAC} can be used
\item with \hol{SIMP\_TAC} there is no need to split the goal
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Context Examples}
\begin{semiverbatim}\scriptsize
> \hol{SIMP_CONV std_ss [] ``((l = []) ==> P l) \holAnd{} Q l``}
val it = |- ((l = []) ==> P l) \holAnd{} Q l <=>
((l = []) ==> P []) \holAnd{} Q l
> \hol{SIMP_CONV arith_ss [] ``if (c \holAnd{} x < 5) then (P c \holAnd{} x < 6) else Q c``}
val it = |- (if c \holAnd{} x < 5 then P c \holAnd{} x < 6 else Q c) <=>
if c \holAnd{} x < 5 then P T else Q c:
> \hol{SIMP_CONV std_ss [] ``P x \holAnd{} (Q x \holAnd{} P x ==> Z x)``}
Exception- UNCHANGED raised
> \hol{SIMP_CONV (std_ss++boolSimps.CONJ_ss) [] ``P x \holAnd{} (Q x \holAnd{} P x ==> Z x)``}
val it = |- P x \holAnd{} (Q x \holAnd{} P x ==> Z x) <=> P x \holAnd{} (Q x ==> Z x)\end{semiverbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting I}
\begin{itemize}
\item perhaps the most powerful feature of the simplifier is that it supports conditional rewriting
\item this means it allows \emph{conditional} rewrite theorems of the form\\
\hol{|- cond ==> (t1 = t2)}
\item if the simplifier finds a term \hol{t1'} it can rewrite via \hol{t1 = t2} to \hol{t2'}, it tries to discharge the assumption \hol{cond'}
\item for this, it calls itself recursively on \hol{cond'}
\begin{itemize}
\item all the decision procedures and all context information is used
\item conditional rewriting can be used
\item to prevent divergence, there is a limit on recursion depth
\end{itemize}
\item if \hol{cond' = T} can be shown, \hol{t1'} is rewritten to \hol{t2'}
\item otherwise \hol{t1'} is not modified
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting Example}
\begin{itemize}
\item consider the conditional rewrite theorem \\\hol{!l n.\ LENGTH l <= n ==> (DROP n l = [])}
\item let's assume we want to prove \\\hol{(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]}
\item we can without conditional rewriting
\begin{itemize}
\item show \hol{|- LENGTH [1;2;3;4] <= 7}
\item use this to discharge the precondition of the rewrite theorem
\item use the resulting theorem to rewrite the goal
\end{itemize}
\item with conditional rewriting, this is all automated
\begin{semiverbatim}
> \hol{SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]
``(DROP 7 [1;2;3;4]) ++ [5;6;7]``}
val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]
\end{semiverbatim}
\item conditional rewriting often shortens proofs considerably
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting Example II}
\begin{block}{Proof with Rewrite}
\begin{semiverbatim}\scriptsize
prove (``(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]``,
`DROP 7 [1;2;3;4] = []` by (
MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>
REWRITE_TAC[LENGTH] >>
DECIDE_TAC
) >>
ASM_REWRITE_TAC[APPEND])
\end{semiverbatim}
\end{block}
\begin{block}{Proof with Simplifier}
\begin{semiverbatim}\scriptsize
prove (``(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]``,
SIMP_TAC list_ss [])
\end{semiverbatim}
Notice that \hol{DROP\_LENGTH\_TOO\_LONG} is part of \hol{list\_ss}.
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting II}
\begin{itemize}
\item conditional rewriting is a very powerful technique
\item decision procedures and sophisticated rewrites can be used to discharge preconditions without cluttering proof state
\item it provides a powerful search for theorems that apply
\item however, if used naively, it can be slow
\item moreover, to work well, rewrite theorems need to of a special form
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting Pitfalls I}
\begin{itemize}
\item if the pattern is too general, the simplifier becomes very slow
\item consider the following, trivial but hopefully educational example
\begin{minipage}{.85\textwidth}
\begin{exampleblock}{Looping example}
\begin{semiverbatim}\scriptsize
> \hol{val my_thm = prove (``~P ==> (P = F)``, PROVE_TAC[])}
> \hol{time (SIMP_CONV std_ss [my_thm]) ``P1 \holAnd{} P2 \holAnd{} P3 \holAnd{} ... \holAnd{} P10``}
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised
> \hol{time (SIMP_CONV std_ss []) ``P1 \holAnd{} P2 \holAnd{} P3 \holAnd{} ... \holAnd{} P10``}
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.
Exception- UNCHANGED raised
\end{semiverbatim}
\end{exampleblock}
\end{minipage}
\begin{itemize}
\item notice that the rewrite is applied at plenty of places (quadratic in number of conjuncts)
\item notice that each backchaining triggers many more backchainings
\item each has to be aborted to prevent diverging
\item as a result, the simplifier becomes very slow
\item incidentally, the conditional rewrite is useless
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting Pitfalls II}
\begin{itemize}
\item good conditional rewrites \hol{|- c ==> (l = r)} should mention only variables in \hol{c} that appear in \hol{l}
\item if \hol{c} contains extra variables \hol{x1 ... xn}, the conditional rewrite engine has to search instantiations for them
\item this mean that conditional rewriting is trying discharge the precondition \hol{?x1 ... xn.\ c}
\item the simplifier is usually not able to find such instances
\begin{exampleblock}{Transitivity}
\begin{semiverbatim}\scriptsize
> \hol{val P_def = Define `P x y = x < y`;}
> \hol{val my_thm = prove (``!x y z. P x y ==> P y z ==> P x z``, ...)}
> \hol{SIMP_CONV arith_ss [my_thm] ``P 2 3 \holAnd{} P 3 4 ==> P 2 4``}
Exception- UNCHANGED raised
(* However transitivity of < build in via decision procedure *)
> \hol{SIMP_CONV arith_ss [P_def] ``P 2 3 \holAnd{} P 3 4 ==> P 2 4``}
val it = |- P 2 3 \holAnd{} P 3 4 ==> P 2 4 <=> T:
\end{semiverbatim}
\end{exampleblock}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Conditional Rewriting Pitfalls III}
\begin{itemize}
\item let's look in detail why \hol{SIMP\_CONV} did not make progress above
\end{itemize}
\begin{semiverbatim}\scriptsize
> \hol{set_trace "simplifier" 2;}
> \hol{SIMP_CONV arith_ss [my_thm] ``P 2 3 \holAnd{} P 3 4 ==> P 2 4``}
[468000]: more context: |- !x y z. P x y ==> P y z ==> P x z
[468000]: New rewrite: |- (?y. P x y \holAnd{} P y z) ==> (P x z <=> T)
...
[584000]: more context: [.] |- P 2 3 \holAnd{} P 3 4
[584000]: New rewrite: [.] |- P 2 3 <=> T
[584000]: New rewrite: [.] |- P 3 4 <=> T
[588000]: rewriting P 2 4 with |- (?y. P x y \holAnd{} P y z) ==> (P x z <=> T)
[588000]: trying to solve: ?y. P 2 y \holAnd{} P y 4
[588000]: rewriting P 2 y with |- (?y. P x y \holAnd{} P y z) ==> (P x z <=> T)
[592000]: trying to solve: ?y'. P 2 y' \holAnd{} P y' y
...
[596000]: looping - cut
...
[608000]: looping - stack limit reached
...
[640000]: couldn't solve: ?y. P 2 y \holAnd{} P y 4
Exception- UNCHANGED raised
\end{semiverbatim}
\end{frame}
\begin{frame}
\frametitle{Conditional vs.\ Unconditional Rewrite Rules}
\begin{itemize}
\item conditional rewrite rules are often much more powerful
\item however, \ml{Rewrite} lib does not support them
\item for this reason there are often two versions of rewrite theorems
\end{itemize}
\begin{exampleblock}{\hol{drop} example}
\begin{itemize}
\item \hol{DROP\_LENGTH\_NIL} is a useful rewrite rule:\\
\hol{|- !l.\ DROP (LENGTH l) l = []}
\item in proofs, one needs to be careful though to preserve exactly this form
\begin{itemize}
\item one should not (partly) evaluate \hol{LENGTH l} or modify \hol{l} somehow
\end{itemize}
\item with the conditional rewrite rule \hol{DROP\_LENGTH\_TOO\_LONG} one does not need to be as careful \\\hol{|- !l n.\ LENGTH l <= n ==> (DROP n l = [])}
\begin{itemize}
\item the simplifier can use simplify the precondition using information about \hol{LENGTH} and even arithmetic decision procedures
\end{itemize}
\end{itemize}
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Special Rewrite Forms}
\begin{itemize}
\item some theorems given in the list of rewrites to the simplifier are used for special purposes
\item there are marking functions that mark these theorems
\begin{itemize}
\item \hol{Once :\ thm -> thm} use given theorem at most once
\item \hol{Ntimes :\ thm -> int -> thm} use given theorem at most the given number of times
\item \hol{AC :\ thm -> thm -> thm} use given associativity and commutativity theorems for AC rewriting
\item \hol{Cong :\ thm -> thm} use given theorem as a congruence rule
\end{itemize}
\item these special forms are easy ways to add this information to a simpset
\item it can be directly set in a simpset as well
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Example \hol{Once}}
\begin{semiverbatim}\scriptsize
> \hol{SIMP_CONV pure_ss [Once ADD_COMM] ``a + b = c + d``}
val it = |- (a + b = c + d) <=> (b + a = c + d)
> \hol{SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ``a + b = c + d``}
val it = |- (a + b = c + d) <=> (a + b = c + d)
> \hol{SIMP_CONV pure_ss [ADD_COMM] ``a + b = c + d``}
Exception- UNCHANGED raised
> \hol{ONCE_REWRITE_CONV [ADD_COMM] ``a + b = c + d``}
val it = |- (a + b = c + d) <=> (b + a = d + c)
> \hol{REWRITE_CONV [ADD_COMM] ``a + b = c + d``}
... diverges ...
\end{semiverbatim}
\end{frame}
\begin{frame}[fragile]
\frametitle{Stateful Simpset}
\begin{itemize}
\item the simpset \hol{srw\_ss()} is maintained by the system
\begin{itemize}
\item it is automatically extended by new type-definitions
\item theories can extend it via \hol{export\_rewrites}
\item libs can augment it via \hol{augment\_srw\_ss}
\end{itemize}
\item the stateful simpset contains many rewrites
\item it is very powerful and easy to use
\end{itemize}
\begin{exampleblock}{Example}
\begin{semiverbatim}\scriptsize
> \hol{SIMP_CONV (srw_ss()) [] ``case [] of [] => (2 + 4)``}
val it = |- (case [] of [] => 2 + 4 | v::v1 => ARB) = 6
\end{semiverbatim}
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Discussion on Stateful Simpset}
\begin{itemize}
\item the stateful simpset is very powerful and easy to use
\item however, results are hard to predict
\item proofs using it unwisely are hard to maintain
\item the stateful simpset can expand too much
\begin{itemize}
\item bigger, harder to read proof states
\item high level arguments become hard to see
\end{itemize}
\item whether to use the stateful simpset depends on personal proof style
\item I advise to not use \hol{srw\_ss} at the beginning
\item once you got a good intuition on how the simplifier works, make your own choice
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Adding Own Conversions}
\begin{itemize}
\item it is complicated to add arbitrary decision procedures to a simpset
\item however, adding simple conversions is straightforward
\item a conversion is described by a \hol{stdconvdata} record
\begin{semiverbatim}\scriptsize
type stdconvdata = \{
name: string, (* name for debugging *)
pats: term list, (* list of patterns, when to try conv *)
conv: conv (* the conversion *)
\}
\end{semiverbatim}
\item use \hol{std\_conv\_ss} to create simpset-fragement
\end{itemize}
\begin{exampleblock}{Example}
\begin{semiverbatim}\scriptsize
val WORD_ADD_ss =
simpLib.std_conv_ss
\{conv = CHANGED_CONV WORD_ADD_CANON_CONV,
name = "WORD_ADD_CANON_CONV",
pats = [``words\$word_add (w:'a word) y``]\}
\end{semiverbatim}
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Summary Simplifier}
\begin{itemize}
\item the simplifier is HOL's main workhorse for automation
\item it is very powerful
\item conditional rewriting very powerful
\begin{itemize}
\item here only simple examples were presented
\item experiment with it to get a feeling
\end{itemize}
\item many advanced features not discussed here at all
\begin{itemize}
\item using congruence rules
\item writing own decision procedures
\item rewriting with respect to arbitrary congruence relations
\end{itemize}
\end{itemize}
\begin{alertblock}{Warning}
The simplifier is very powerful. Make sure you understand it and are in control when using it.
Otherwise your proofs easily become lengthy, convoluted and hard to maintain.
\end{alertblock}
\end{frame}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "current"
%%% End: